Coverage for lst_auto_rta/Ring_Background_Maps.py: 0%

170 statements  

« prev     ^ index     » next       coverage.py v7.10.6, created at 2025-09-07 13:48 +0000

1#!/usr/bin/env python 

2 

3import astropy 

4import gammapy 

5import matplotlib 

6import numpy as np 

7import regions 

8 

9print("gammapy:", gammapy.__version__) 

10print("numpy:", np.__version__) 

11print("astropy", astropy.__version__) 

12print("regions", regions.__version__) 

13print("matplotlib", matplotlib.__version__) 

14 

15import os 

16 

17import astropy.units as u 

18import matplotlib.pyplot as plt 

19import matplotlib.style as style 

20import numpy as np 

21from astropy.coordinates import SkyCoord 

22 

23style.use("tableau-colorblind10") 

24import argparse 

25from pathlib import Path 

26 

27from acceptance_modelisation import RadialAcceptanceMapCreator 

28from gammapy.data import DataStore 

29from gammapy.datasets import ( 

30 Datasets, 

31 MapDataset, 

32 SpectrumDataset, 

33) 

34from gammapy.estimators import ExcessMapEstimator 

35from gammapy.estimators.utils import find_peaks 

36from gammapy.makers import ( 

37 MapDatasetMaker, 

38 ReflectedRegionsBackgroundMaker, 

39 RingBackgroundMaker, 

40 SafeMaskMaker, 

41 SpectrumDatasetMaker, 

42) 

43from gammapy.maps import Map, MapAxis, RegionGeom, WcsGeom 

44from matplotlib.offsetbox import AnchoredText 

45from regions import CircleSkyRegion 

46from scipy.stats import norm 

47 

48parser = argparse.ArgumentParser( 

49 description="Automatic Script for the DL1 check", formatter_class=argparse.ArgumentDefaultsHelpFormatter 

50) 

51parser.add_argument("-d", "--directory", default="/fefs/onsite/pipeline/rta/data/", help="Directory for data") 

52parser.add_argument("-da", "--date", default="20230705", help="Date of the run to check") 

53parser.add_argument("-r", "--run-id", default="13600", help="run id to check") 

54parser.add_argument("-add", "--add-string", default="", help="add a string to the path") 

55parser.add_argument("-RA", "--right-ascension", default="270.19042", help="right-ascension in deg") 

56parser.add_argument("-DEC", "--declination", default="78.46806", help="declination in deg") 

57 

58args = parser.parse_args() 

59config = vars(args) 

60 

61location_data = ( 

62 config["directory"] + config["date"] + "/" + config["run_id"] + "/" + config["add_string"] + "/DL3" 

63) # path to DL3 folder 

64source_name = config["run_id"] # e.g., Crab, GRB210807A 

65cut_type = "standard" # e.g., loose, hard, ... 

66filename_output = "{name}_{cut}".format(name=source_name, cut=cut_type) 

67 

68source_position = SkyCoord(ra=config["right_ascension"], dec=config["declination"], unit="deg", frame="icrs") 

69max_offset_run = 10 * u.deg 

70work_directory = location_data 

71path_plot = Path(work_directory + "/../plots") 

72print(work_directory + "/../plots") 

73path_plot.mkdir(exist_ok=True) 

74path_background = Path(work_directory + "/../plots") 

75path_background.mkdir(exist_ok=True) 

76 

77e_min = 0.05 * u.TeV 

78e_max = 10.0 * u.TeV 

79n_bin_per_decade = 10 

80on_radius = 0.2 * u.deg 

81exclusion_radius = 0.0 * u.deg 

82fov_observation = 7 * u.deg 

83 

84r_in = 0.5 * u.deg 

85width = 0.4 * u.deg 

86correlation_radius = 0.2 * u.deg 

87 

88n_bin_per_decade_acceptance = 1. 

89offset_bin_size_acceptance =0.4 * u.deg 

90 

91data_store = DataStore.from_dir(location_data) 

92data_store.info() 

93 

94obs_ids = data_store.obs_table[source_position.separation(data_store.obs_table.pointing_radec) < max_offset_run][ 

95 "OBS_ID" 

96] 

97obs_collection = data_store.get_observations(obs_ids, required_irf=None) 

98 

99exclude_region = CircleSkyRegion(center=source_position, radius=exclusion_radius) 

100 

101n_bin_energy = int((np.log10(e_max.to_value(u.TeV)) - np.log10(e_min.to_value(u.TeV))) * n_bin_per_decade) 

102energy_axis = MapAxis.from_edges( 

103 np.logspace(np.log10(e_min.to_value(u.TeV)), np.log10(e_max.to_value(u.TeV)), n_bin_energy + 1), 

104 unit="TeV", 

105 name="energy", 

106 interp="log", 

107) 

108#maximal_run_separation = np.max( 

109# source_position.separation(data_store.obs_table[np.isin(data_store.obs_table["OBS_ID"], obs_ids)].pointing_radec) 

110#) 

111#geom = WcsGeom.create( 

112 # skydir=source_position, 

113 # width=((maximal_run_separation + fov_observation)*1.2, (maximal_run_separation + fov_observation)*1.2), 

114 # binsz=0.05, 

115 #frame="icrs", 

116 #axes=[energy_axis], 

117#) 

118 

119pointing_coords = SkyCoord([obs.pointing_radec for obs in obs_collection]) 

120 

121x = np.cos(pointing_coords.ra.radian) * np.cos(pointing_coords.dec.radian) 

122y = np.sin(pointing_coords.ra.radian) * np.cos(pointing_coords.dec.radian) 

123z = np.sin(pointing_coords.dec.radian) 

124 

125x_mean = np.mean(x) 

126y_mean = np.mean(y) 

127z_mean = np.mean(z) 

128 

129r = np.sqrt(x_mean**2 + y_mean**2 + z_mean**2) 

130x_mean /= r 

131y_mean /= r 

132z_mean /= r 

133 

134ra_mean = np.arctan2(y_mean, x_mean) * u.rad 

135dec_mean = np.arcsin(z_mean) * u.rad 

136 

137center_coord = SkyCoord(ra=ra_mean, dec=dec_mean, frame="icrs") 

138max_separation = center_coord.separation(pointing_coords).max() 

139map_width = (2 * max_separation + fov_observation) 

140 

141geom = WcsGeom.create( 

142 skydir=center_coord, 

143 width=(map_width, map_width), 

144 binsz=0.05, 

145 frame="icrs", 

146 axes=[energy_axis], 

147) 

148 

149geom_image = geom.to_image() 

150exclusion_mask = ~geom_image.region_mask([exclude_region]) 

151 

152stacked = MapDataset.create(geom=geom, name=source_name + "_stacked") 

153unstacked = Datasets() 

154maker = MapDatasetMaker(selection=["counts"]) 

155maker_safe_mask = SafeMaskMaker(methods=["offset-max"], offset_max=fov_observation) 

156 

157for obs in obs_collection: 

158 cutout = stacked.cutout(obs.pointing_radec, width="6.5 deg") 

159 dataset = maker.run(cutout, obs) 

160 dataset = maker_safe_mask.run(dataset, obs) 

161 stacked.stack(dataset) 

162 unstacked.append(dataset) 

163 

164n_bin_energy_acceptance = int( 

165 (np.log10(e_max.to_value(u.TeV)) - np.log10(e_min.to_value(u.TeV))) * n_bin_per_decade_acceptance 

166) 

167energyAxisAcceptance = MapAxis.from_edges( 

168 np.logspace(np.log10(e_min.to_value(u.TeV)), np.log10(e_max.to_value(u.TeV)), 1 + n_bin_energy_acceptance), 

169 unit="TeV", 

170 name="energy", 

171 interp="log", 

172) 

173n_bin_offset_acceptance = int(fov_observation.to_value(u.deg) / offset_bin_size_acceptance.to_value(u.deg)) 

174offsetAxisAcceptance = MapAxis.from_edges( 

175 np.linspace(0.0, fov_observation.to_value(u.deg), 1 + n_bin_offset_acceptance), 

176 unit="deg", 

177 name="offset", 

178 interp="lin", 

179) 

180 

181background_creator = RadialAcceptanceMapCreator( 

182 energyAxisAcceptance, 

183 offsetAxisAcceptance, 

184 exclude_regions=[ 

185 exclude_region, 

186 ], 

187 oversample_map=10, 

188) 

189background = background_creator.create_radial_acceptance_map_per_observation(obs_collection) 

190# background[list(background.keys())[0]].peek() 

191for obs_id in background.keys(): 

192 hdu_background = background[obs_id].to_table_hdu() 

193 hdu_background.writeto( 

194 os.path.join(path_background, filename_output + "_" + str(obs_id) + "_background.fits"), overwrite=True 

195 ) 

196 

197data_store.hdu_table.remove_rows(data_store.hdu_table["HDU_TYPE"] == "bkg") 

198 

199for obs_id in np.unique(data_store.hdu_table["OBS_ID"]): 

200 data_store.hdu_table.add_row( 

201 { 

202 "OBS_ID": obs_id, 

203 "HDU_TYPE": "bkg", 

204 "HDU_CLASS": "bkg_2d", 

205 "FILE_DIR": "", 

206 "FILE_NAME": os.path.join(path_background, filename_output + "_" + str(obs_id) + "_background.fits"), 

207 "HDU_NAME": "BACKGROUND", 

208 "SIZE": hdu_background.size, 

209 } 

210 ) 

211 

212data_store.hdu_table = data_store.hdu_table.copy() 

213obs_collection = data_store.get_observations(obs_ids, required_irf=None) 

214 

215stacked = MapDataset.create(geom=geom) 

216unstacked = Datasets() 

217maker = MapDatasetMaker(selection=["counts", "background"]) 

218maker_safe_mask = SafeMaskMaker(methods=["offset-max"], offset_max=fov_observation) 

219 

220for obs in obs_collection: 

221 cutout = stacked.cutout(obs.pointing_radec, width="6.5 deg") 

222 dataset = maker.run(cutout, obs) 

223 dataset = maker_safe_mask.run(dataset, obs) 

224 stacked.stack(dataset) 

225 unstacked.append(dataset) 

226 

227ring_bkg_maker = RingBackgroundMaker(r_in=r_in, width=width) # , exclusion_mask=exclusion_mask) 

228stacked_ring = ring_bkg_maker.run(stacked.to_image()) 

229estimator = ExcessMapEstimator(correlation_radius, correlate_off=False) 

230lima_maps = estimator.run(stacked_ring) 

231 

232significance_all = lima_maps["sqrt_ts"].data[np.isfinite(lima_maps["sqrt_ts"].data)] 

233significance_background = lima_maps["sqrt_ts"].data[ 

234 np.logical_and(np.isfinite(lima_maps["sqrt_ts"].data), exclusion_mask.data) 

235] 

236 

237bins = np.linspace( 

238 np.min(significance_all), 

239 np.max(significance_all), 

240 num=int((np.max(significance_all) - np.min(significance_all)) * 3), 

241) 

242 

243# Now, fit the off distribution with a Gaussian 

244mu, std = norm.fit(significance_background) 

245x = np.linspace(-8, 8, 50) 

246p = norm.pdf(x, mu, std) 

247 

248plt.figure(figsize=(8, 21)) 

249ax1 = plt.subplot(3, 1, 1, projection=lima_maps["sqrt_ts"].geom.wcs) 

250ax2 = plt.subplot(3, 1, 2, projection=lima_maps["sqrt_ts"].geom.wcs) 

251ax3 = plt.subplot(3, 1, 3) 

252 

253ax2.set_title("Significance map") 

254lima_maps["sqrt_ts"].plot(ax=ax2, add_cbar=True) 

255ax2.scatter( 

256 source_position.ra, 

257 source_position.dec, 

258 transform=ax2.get_transform("world"), 

259 marker="+", 

260 c="red", 

261 label=filename_output, 

262 s=[300], 

263 linewidths=3, 

264) 

265ax2.legend() 

266 

267sources = find_peaks( 

268 lima_maps["sqrt_ts"].get_image_by_idx((0,)), 

269 threshold=5, 

270 min_distance="0.2 deg", 

271) 

272#sources = find_peaks( 

273# lima_maps["npred_excess"].get_image_by_idx((0,)), 

274# threshold=150, 

275# min_distance="0.2 deg", 

276#) 

277print(sources) 

278# now = dt.datetime.now() 

279# timestamp_str = now.strftime("%Y-%m-%d %H:%M:%S") 

280# ax1.text(0.02, 0.98, timestamp_str, transform=ax1.transAxes, 

281# fontsize=11, fontweight='bold', va='top', ha='left') 

282# ax2.text(0.02, 0.98, timestamp_str, transform=ax2.transAxes, 

283# fontsize=11, fontweight='bold', va='top', ha='left') 

284if len(sources) > 0: 

285 ax2.scatter( 

286 sources["ra"], 

287 sources["dec"], 

288 #transform=plt.gca().get_transform("icrs"), 

289 transform=ax2.get_transform("icrs"), 

290 color="none", 

291 edgecolor="red", 

292 marker="o", 

293 s=300, 

294 lw=1.5, 

295 ) 

296 

297for obs in obs_collection: 

298 ax2.scatter( 

299 obs.pointing_radec.ra, 

300 obs.pointing_radec.dec, 

301 transform=ax2.get_transform("icrs"), 

302 marker="x", 

303 c="black", 

304 s=100, 

305 linewidths=1.5, 

306 ) 

307 

308# Dummy entry for legend 

309ax2.scatter([], [], marker="x", c="black", label="Pointings") 

310 

311 

312ax1.set_title("Excess map") 

313lima_maps["npred_excess"].plot(ax=ax1, add_cbar=True) 

314ax1.scatter( 

315 source_position.ra, 

316 source_position.dec, 

317 transform=ax1.get_transform("icrs"), 

318 marker="+", 

319 c="red", 

320 label=filename_output, 

321 s=[300], 

322 linewidths=3, 

323) 

324 

325for obs in obs_collection: 

326 ax1.scatter( 

327 obs.pointing_radec.ra, 

328 obs.pointing_radec.dec, 

329 transform=ax1.get_transform("icrs"), 

330 marker="x", 

331 c="black", 

332 s=100, 

333 linewidths=1.5, 

334 ) 

335 

336ax1.scatter([], [], marker="x", c="black", label="Pointings") 

337 

338 

339ax1.legend() 

340 

341ax3.set_title("Significance distribution") 

342ax3.hist(significance_all, density=True, alpha=0.5, color="red", label="All bins", bins=bins) 

343ax3.hist(significance_background, density=True, alpha=0.5, color="blue", label="Background bins", bins=bins) 

344 

345ax3.plot(x, p, lw=2, color="black") 

346ax3.legend() 

347ax3.set_xlabel("Significance") 

348ax3.set_yscale("log") 

349ax3.set_ylim(1e-5, 1) 

350xmin, xmax = np.min(significance_all), np.max(significance_all) 

351ax3.set_xlim(xmin, xmax) 

352 

353text = text = r"$\mu$ = {:.2f}" f"\n" r"$\sigma$ = {:.2f}".format(mu, std) 

354box_prop = dict(boxstyle="Round", facecolor="white", alpha=0.5) 

355text_prop = dict(fontsize="x-large", bbox=box_prop) 

356# txt = AnchoredText(text, loc=2, transform=ax3.transAxes, prop=text_prop, frameon=False) 

357txt = AnchoredText(text, loc=2, prop=text_prop, frameon=False) 

358ax3.add_artist(txt) 

359 

360plt.savefig(os.path.join(path_plot, "{}__sky_map.png".format(filename_output)), dpi=300) 

361print(f"Fit results: mu = {mu:.2f}, std = {std:.2f}")