Coverage for lst_auto_rta/acceptanceCalculation.py: 0%
50 statements
« prev ^ index » next coverage.py v7.6.4, created at 2024-11-03 14:47 +0000
« prev ^ index » next coverage.py v7.6.4, created at 2024-11-03 14:47 +0000
1import astropy.units as u
2import numpy as np
3from astropy.coordinates import SkyCoord
4from gammapy.data import DataStore
5from gammapy.datasets import MapDataset
6from gammapy.irf import Background2D
7from gammapy.makers import MapDatasetMaker
8from gammapy.maps import WcsGeom, WcsNDMap
9from regions import CircleAnnulusSkyRegion
12def create_radial_acceptance_map(observations, energy_axis, offset_axis, oversample_map=10, exclude_regions=[]):
13 """
14 Calculate a radial acceptance map
16 Parameters
17 ----------
18 observations : gammapy.data.observations.Observations
19 The collection of observations used to make the acceptance map
20 energy_axis : gammapy.maps.geom.MapAxis
21 The energy axis for the acceptance model
22 offset_axis : gammapy.maps.geom.MapAxis
23 The offset axis for the acceptance model
24 oversample_map : int
25 oversample in number of pixel of the spatial axis used for the calculation
26 exclude_regions : list of 'regions.SkyRegion'
27 Region with sources, will be excluded of the calculation of the acceptance map
29 Returns
30 -------
31 background : gammapy.irf.background.Background2D
32 A bakground model that could be used as an acceptance model
33 """
35 n_bins_map = offset_axis.nbin * oversample_map * 2
36 binsz = offset_axis.edges[-1] / (n_bins_map / 2)
37 center_map = SkyCoord(ra=0.0 * u.deg, dec=0.0 * u.deg, frame="icrs")
39 geom = WcsGeom.create(
40 skydir=center_map, npix=(n_bins_map, n_bins_map), binsz=binsz, frame="icrs", axes=[energy_axis]
41 )
43 count_map_background = WcsNDMap(geom=geom)
44 exp_map_background = WcsNDMap(geom=geom, unit=u.s)
45 exp_map_background_total = WcsNDMap(geom=geom, unit=u.s)
46 livetime = 0.0 * u.s
48 for obs in observations:
49 geom_obs = WcsGeom.create(
50 skydir=obs.pointing_radec, npix=(n_bins_map, n_bins_map), binsz=binsz, frame="icrs", axes=[energy_axis]
51 )
52 count_map_obs = MapDataset.create(geom=geom_obs)
53 exp_map_obs = MapDataset.create(geom=geom_obs)
54 exp_map_obs_total = MapDataset.create(geom=geom_obs)
55 maker = MapDatasetMaker(selection=["counts"])
57 exclusion_mask = geom_obs.to_image().region_mask(exclude_regions, inside=False)
58 exclusion_map = WcsNDMap(geom_obs.to_image(), exclusion_mask)
60 count_map_obs = maker.run(MapDataset.create(geom=geom_obs), obs)
62 exp_map_obs.counts.data = obs.observation_live_time_duration.value
63 exp_map_obs_total.counts.data = obs.observation_live_time_duration.value
65 for i in range(count_map_obs.counts.data.shape[0]):
66 count_map_obs.counts.data[i, :, :] = count_map_obs.counts.data[i, :, :] * exclusion_map
67 exp_map_obs.counts.data[i, :, :] = exp_map_obs.counts.data[i, :, :] * exclusion_map
69 count_map_background.data += count_map_obs.counts.data
70 exp_map_background.data += exp_map_obs.counts.data
71 exp_map_background_total.data += exp_map_obs_total.counts.data
72 livetime += obs.observation_live_time_duration
74 # import matplotlib.pyplot as plt
75 # plt.figure()
76 # count_map_background.plot_grid(figsize=(10, 10))#, add_cbar=True)
77 # plt.figure()
78 # exp_map_background.plot_grid(figsize=(10, 10), add_cbar=True)
79 # plt.figure()
80 # exp_map_background_total.plot_grid(figsize=(10, 10), add_cbar=True)
81 # plot_x = []
82 # plot_y = []
84 data_background = np.zeros((energy_axis.nbin, offset_axis.nbin)) * u.Unit("s-1 MeV-1 sr-1")
85 for i in range(offset_axis.nbin):
86 selection_region = CircleAnnulusSkyRegion(
87 center=center_map, inner_radius=offset_axis.edges[i], outer_radius=offset_axis.edges[i + 1]
88 )
89 selection_mask = geom.to_image().region_mask([selection_region], inside=True)
90 selection_map = WcsNDMap(geom.to_image(), selection_mask)
91 for j in range(energy_axis.nbin):
92 value = u.dimensionless_unscaled * np.sum(count_map_background.data[j, :, :] * selection_map)
93 value *= np.sum(exp_map_background_total.data[j, :, :] * selection_map) / np.sum(
94 exp_map_background.data[j, :, :] * selection_map
95 )
97 # plt.figure()
98 # plt.imshow(count_map_background.data[j, :, :]*selection_map)
100 value /= energy_axis.edges[j + 1] - energy_axis.edges[j]
101 value /= (
102 2.0
103 * np.pi
104 * (offset_axis.edges[i + 1].to("radian") - offset_axis.edges[i].to("radian"))
105 * offset_axis.center[i].to("radian")
106 )
107 value /= livetime
108 data_background[j, i] = value
110 # print(np.sum(count_map_background.data[j, :, :]*selection_map), np.sum(count_map_background.data[j, :, :]*selection_map)*np.sum(exp_map_background_total.data[j, :, :]*selection_map)/np.sum(exp_map_background.data[j, :, :]*selection_map), (energy_axis.edges[j+1]-energy_axis.edges[j]), 2. * np.pi * (offset_axis.edges[j+1].to('radian')-offset_axis.edges[j].to('radian')) * offset_axis.center[j].to('radian'), livetime, value, np.sum(exp_map_background_total.data[j, :, :]*selection_map)/np.sum(exp_map_background.data[j, :, :]*selection_map), np.sum(exp_map_background_total.data[j, :, :]*selection_map), np.sum(exp_map_background.data[j, :, :]*selection_map))
112 # plot_x.append(np.sum(exp_map_background.data[j, :, :]*selection_map))
113 # plot_y.append((2. * np.pi * (offset_axis.edges[i+1].to('radian')-offset_axis.edges[i].to('radian')) * offset_axis.center[i].to('radian')).value)
115 # plt.figure()
116 # plt.plot(plot_x, plot_y, '+')
118 background = Background2D(energy_axis=energy_axis, offset_axis=offset_axis, data=data_background)
120 return background